Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The conserved CDC motif in the yeast iron regulator Aft2 mediates iron-sulfur cluster exchange and protein-protein interactions with Grx3 and Bol2.

Identifieur interne : 000113 ( Main/Exploration ); précédent : 000112; suivant : 000114

The conserved CDC motif in the yeast iron regulator Aft2 mediates iron-sulfur cluster exchange and protein-protein interactions with Grx3 and Bol2.

Auteurs : Haoran Li [États-Unis] ; Caryn E. Outten [États-Unis]

Source :

RBID : pubmed:31493153

Descripteurs français

English descriptors

Abstract

The Saccharomyces cerevisiae transcriptional activator Aft1 and its paralog Aft2 respond to iron deficiency by upregulating expression of proteins required for iron uptake at the plasma membrane, vacuolar iron transport, and mitochondrial iron metabolism, with the net result of mobilizing iron from extracellular sources and intracellular stores. Conversely, when iron levels are sufficient, Aft1 and Aft2 interact with the cytosolic glutaredoxins Grx3 and Grx4 and the BolA protein Bol2, which promote Aft1/2 dissociation from DNA and subsequent export from the nucleus. Previous studies unveiled the molecular mechanism for iron-dependent inhibition of Aft1/2 activity, demonstrating that the [2Fe-2S]-bridged Grx3-Bol2 heterodimer transfers a cluster to Aft2, driving Aft2 dimerization and dissociation from DNA. Here, we provide further insight into the regulation mechanism by investigating the roles of conserved cysteines in Aft2 in iron-sulfur cluster binding and interaction with [2Fe-2S]-Grx3-Bol2. Using size exclusion chromatography and circular dichroism spectroscopy, these studies reveal that both cysteines in the conserved Aft2 Cys-Asp-Cys motif are essential for Aft2 dimerization via [2Fe-2S] cluster binding, while only one cysteine is required for interaction with the [2Fe-2S]-Grx3-Bol2 complex. Taken together, these results provide novel insight into the molecular details of iron-sulfur cluster transfer from Grx3-Bol2 to Aft2 which likely occurs through a ligand exchange mechanism. Loss of either cysteine in the Aft2 iron-sulfur binding site may disrupt this ligand-exchange process leading to the isolation of a trapped Aft2-Grx3-Bol2 intermediate, while the replacement of both cysteines abrogates both the iron-sulfur cluster exchange and the protein-protein interactions between Aft2 and Grx3-Bol2.

DOI: 10.1007/s00775-019-01705-x
PubMed: 31493153
PubMed Central: PMC6800183


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The conserved CDC motif in the yeast iron regulator Aft2 mediates iron-sulfur cluster exchange and protein-protein interactions with Grx3 and Bol2.</title>
<author>
<name sortKey="Li, Haoran" sort="Li, Haoran" uniqKey="Li H" first="Haoran" last="Li">Haoran Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208</wicri:regionArea>
<orgName type="university">Université de Caroline du Sud</orgName>
<placeName>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Kymera Therapeutics, Cambridge, MA, 02139, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Kymera Therapeutics, Cambridge, MA, 02139</wicri:regionArea>
<wicri:noRegion>02139</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA. outten@sc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208</wicri:regionArea>
<orgName type="university">Université de Caroline du Sud</orgName>
<placeName>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31493153</idno>
<idno type="pmid">31493153</idno>
<idno type="doi">10.1007/s00775-019-01705-x</idno>
<idno type="pmc">PMC6800183</idno>
<idno type="wicri:Area/Main/Corpus">000115</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000115</idno>
<idno type="wicri:Area/Main/Curation">000115</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000115</idno>
<idno type="wicri:Area/Main/Exploration">000115</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The conserved CDC motif in the yeast iron regulator Aft2 mediates iron-sulfur cluster exchange and protein-protein interactions with Grx3 and Bol2.</title>
<author>
<name sortKey="Li, Haoran" sort="Li, Haoran" uniqKey="Li H" first="Haoran" last="Li">Haoran Li</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208</wicri:regionArea>
<orgName type="university">Université de Caroline du Sud</orgName>
<placeName>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Kymera Therapeutics, Cambridge, MA, 02139, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Kymera Therapeutics, Cambridge, MA, 02139</wicri:regionArea>
<wicri:noRegion>02139</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA. outten@sc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208</wicri:regionArea>
<orgName type="university">Université de Caroline du Sud</orgName>
<placeName>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry</title>
<idno type="eISSN">1432-1327</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromatography, Gel (MeSH)</term>
<term>Circular Dichroism (MeSH)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Mitochondrial Proteins (chemistry)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Plasmids (genetics)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Multimerization (MeSH)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Trans-Activators (chemistry)</term>
<term>Trans-Activators (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chromatographie sur gel (MeSH)</term>
<term>Dichroïsme circulaire (MeSH)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Multimérisation de protéines (MeSH)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Plasmides (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines mitochondriales (composition chimique)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Transactivateurs (composition chimique)</term>
<term>Transactivateurs (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Trans-Activators</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Trans-Activators</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines mitochondriales</term>
<term>Transactivateurs</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Oxidoreductases</term>
<term>Plasmides</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines mitochondriales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines mitochondriales</term>
<term>Saccharomyces cerevisiae</term>
<term>Transactivateurs</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, Gel</term>
<term>Circular Dichroism</term>
<term>Protein Binding</term>
<term>Protein Multimerization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie sur gel</term>
<term>Dichroïsme circulaire</term>
<term>Liaison aux protéines</term>
<term>Multimérisation de protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Saccharomyces cerevisiae transcriptional activator Aft1 and its paralog Aft2 respond to iron deficiency by upregulating expression of proteins required for iron uptake at the plasma membrane, vacuolar iron transport, and mitochondrial iron metabolism, with the net result of mobilizing iron from extracellular sources and intracellular stores. Conversely, when iron levels are sufficient, Aft1 and Aft2 interact with the cytosolic glutaredoxins Grx3 and Grx4 and the BolA protein Bol2, which promote Aft1/2 dissociation from DNA and subsequent export from the nucleus. Previous studies unveiled the molecular mechanism for iron-dependent inhibition of Aft1/2 activity, demonstrating that the [2Fe-2S]-bridged Grx3-Bol2 heterodimer transfers a cluster to Aft2, driving Aft2 dimerization and dissociation from DNA. Here, we provide further insight into the regulation mechanism by investigating the roles of conserved cysteines in Aft2 in iron-sulfur cluster binding and interaction with [2Fe-2S]-Grx3-Bol2. Using size exclusion chromatography and circular dichroism spectroscopy, these studies reveal that both cysteines in the conserved Aft2 Cys-Asp-Cys motif are essential for Aft2 dimerization via [2Fe-2S] cluster binding, while only one cysteine is required for interaction with the [2Fe-2S]-Grx3-Bol2 complex. Taken together, these results provide novel insight into the molecular details of iron-sulfur cluster transfer from Grx3-Bol2 to Aft2 which likely occurs through a ligand exchange mechanism. Loss of either cysteine in the Aft2 iron-sulfur binding site may disrupt this ligand-exchange process leading to the isolation of a trapped Aft2-Grx3-Bol2 intermediate, while the replacement of both cysteines abrogates both the iron-sulfur cluster exchange and the protein-protein interactions between Aft2 and Grx3-Bol2.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31493153</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1327</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>24</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry</Title>
<ISOAbbreviation>J Biol Inorg Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>The conserved CDC motif in the yeast iron regulator Aft2 mediates iron-sulfur cluster exchange and protein-protein interactions with Grx3 and Bol2.</ArticleTitle>
<Pagination>
<MedlinePgn>809-815</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00775-019-01705-x</ELocationID>
<Abstract>
<AbstractText>The Saccharomyces cerevisiae transcriptional activator Aft1 and its paralog Aft2 respond to iron deficiency by upregulating expression of proteins required for iron uptake at the plasma membrane, vacuolar iron transport, and mitochondrial iron metabolism, with the net result of mobilizing iron from extracellular sources and intracellular stores. Conversely, when iron levels are sufficient, Aft1 and Aft2 interact with the cytosolic glutaredoxins Grx3 and Grx4 and the BolA protein Bol2, which promote Aft1/2 dissociation from DNA and subsequent export from the nucleus. Previous studies unveiled the molecular mechanism for iron-dependent inhibition of Aft1/2 activity, demonstrating that the [2Fe-2S]-bridged Grx3-Bol2 heterodimer transfers a cluster to Aft2, driving Aft2 dimerization and dissociation from DNA. Here, we provide further insight into the regulation mechanism by investigating the roles of conserved cysteines in Aft2 in iron-sulfur cluster binding and interaction with [2Fe-2S]-Grx3-Bol2. Using size exclusion chromatography and circular dichroism spectroscopy, these studies reveal that both cysteines in the conserved Aft2 Cys-Asp-Cys motif are essential for Aft2 dimerization via [2Fe-2S] cluster binding, while only one cysteine is required for interaction with the [2Fe-2S]-Grx3-Bol2 complex. Taken together, these results provide novel insight into the molecular details of iron-sulfur cluster transfer from Grx3-Bol2 to Aft2 which likely occurs through a ligand exchange mechanism. Loss of either cysteine in the Aft2 iron-sulfur binding site may disrupt this ligand-exchange process leading to the isolation of a trapped Aft2-Grx3-Bol2 intermediate, while the replacement of both cysteines abrogates both the iron-sulfur cluster exchange and the protein-protein interactions between Aft2 and Grx3-Bol2.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Haoran</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Kymera Therapeutics, Cambridge, MA, 02139, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Outten</LastName>
<ForeName>Caryn E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA. outten@sc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R35 GM118164</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Biol Inorg Chem</MedlineTA>
<NlmUniqueID>9616326</NlmUniqueID>
<ISSNLinking>0949-8257</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C436328">Aft2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000624276">Bol3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015534">Trans-Activators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C545181">Grx3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002850" MajorTopicYN="N">Chromatography, Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015534" MajorTopicYN="N">Trans-Activators</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Circular dichroism</Keyword>
<Keyword MajorTopicYN="Y">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">Glutathione</Keyword>
<Keyword MajorTopicYN="Y">Iron regulation</Keyword>
<Keyword MajorTopicYN="Y">Iron–sulfur cluster</Keyword>
<Keyword MajorTopicYN="Y">Yeast</Keyword>
<Keyword MajorTopicYN="Y">Zinc-finger domain</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31493153</ArticleId>
<ArticleId IdType="doi">10.1007/s00775-019-01705-x</ArticleId>
<ArticleId IdType="pii">10.1007/s00775-019-01705-x</ArticleId>
<ArticleId IdType="pmc">PMC6800183</ArticleId>
<ArticleId IdType="mid">NIHMS1539251</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Sep 7;276(36):34221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11448968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14322-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11734641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18914-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11877447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 25;278(30):27636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12756250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Jan;169(1):107-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(15):6760-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16024809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Aug;18(8):2980-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17538022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jan 7;286(1):867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Dec;32(24):4998-5008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4043-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Mar 15;14(6):1231-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7720713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Jul 1;15(13):3377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8670839</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Sud</li>
</region>
<settlement>
<li>Columbia (Caroline du Sud)</li>
</settlement>
<orgName>
<li>Université de Caroline du Sud</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Sud">
<name sortKey="Li, Haoran" sort="Li, Haoran" uniqKey="Li H" first="Haoran" last="Li">Haoran Li</name>
</region>
<name sortKey="Li, Haoran" sort="Li, Haoran" uniqKey="Li H" first="Haoran" last="Li">Haoran Li</name>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000113 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000113 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31493153
   |texte=   The conserved CDC motif in the yeast iron regulator Aft2 mediates iron-sulfur cluster exchange and protein-protein interactions with Grx3 and Bol2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31493153" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020